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Abstract 

Thermal conductivity has been previously obtained from molecular dynamics (MD) 

simulations using either equilibrium (EMD) simulations (from Green-Kubo equations) or 

from steady-state nonequilibrium (NEMD) simulations.  In the case of NEMD, either 

boundary-driven steady states are simulated or constrained equations of motion are used to 

obtain steady-state heat transfer rates.  Like their experimental counterparts, these 

nonequilibrium steady-state methods are time consuming and may have convection 

problems.  Here we report a new transient method developed to provide accurate thermal 

conductivity predictions from MD simulations. 

 
In the proposed MD method, molecules that lie within a specified volume are 

instantaneously heated.  The temperature decay of the system of molecules inside the 

heated volume is compared to the solution of the transient energy equation and the thermal 

diffusivity is regressed.  Since the density of the fluid is set in the simulation only the 

isochoric heat capacity is needed in order to obtain the thermal conductivity.  In this study 

the isochoric heat capacity is determined from energy fluctuations within the simulated 

fluid.  The method is valid in the liquid, vapor and critical regions. 

 

Simulated values for the thermal conductivity of a Lennard-Jones (LJ) fluid were obtained 

using this new method over a temperature range of 90–900 K and density range of 1-35 

kmol·m-3.  These values compare favorably with experimental values for Argon.  The new 

method has an accuracy of ±10%.  Compared to other methods the algorithm is quick, easy 

to code, and applicable to small systems, making the simulations very efficient.  
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1. Introduction 

 
Thermal conductivity is obtained from molecular dynamics using either equilibrium 

simulations [1-4] (from Green-Kubo equations) or from steady-state nonequilibrium 

simulations. [5-10]  The Green-Kubo equations used to calculate thermal conductivity are, 
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where �  is thermal conductivity, V  is volume, T  is temperature, kb is Boltzmann’s 

constant,  is heat flux, �  is the component of the heat flux vector, t  is time and U  is 

internal energy.  Equation 1 shows that the Green-Kubo relationship must be summed as 

time goes to infinity.  The heat flux is a system property owing to the sum over all particles 

in equation 2, and therefore requires numerous evaluations of the correlation function in 

equation 1 to obtain reasonable statistical accuracy.  The slow convergence of the integral 

in equation 1 is also problematic.  

�
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Steady-state NEMD simulations are also used to calculate thermal conductivity.  One 

attempt is to specify the heat flux and use the simulation to find the temperature gradient. 

[5]  The thermal conductivity is then obtained from Fourier’s law.  Like its experimental 

counterparts, this nonequilibrium steady-state method may have convection problems.  

Another method used to calculate thermal conductivity using nonequilibrium molecular 
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dynamics is the homogeneous field method. [8]  In this method a constraint forces are 

introduced into the equation of motion to produce a desired heat flow and the thermal 

conductivity is then obtained from the force-flux relationship.  However the applied field 

must be large to obtain a reasonable signal-to-noise ratio.  Usually simulations at different 

heat fluxes must be performed and the thermal conductivity is obtained from an 

extrapolation to zero flux.  As the magnitude of the applied field is decreased the 

computational time greatly increases.  The NEMD methods avoid the long simulation times 

that result from the Green-Kubo relationship but they still suffer from the difficulty in 

determining the microscopic heat flux.  The microscopic heat flux is an interparticle 

dynamic relationship.  NEMD methods cannot easily be applied to systems that have long-

range interactions because there are no available methods for calculating long-range 

dynamic interactions. [11] 

2. Theory 

 

The proposed method is a nonequilibrium transient method.  The simulations are set up in a 

three dimensional box with periodic boundary conditions in all three directions.  A random 

point in the simulation is selected and all molecules within a specified radius of that point 

are instantaneously heated by velocity rescaling.  The volume element itself is treated as a 

“lumped capacitance” of uniform spatial temperature, and the kinetic energy of the 

molecules within the heated volume element is used to monitor its temperature decay.  In 

this work, we have tracked the temperature decay until it is within 10% of the bulk 

temperature.  This procedure of heating a small volume and recording the temperature-time 



 6

behavior for a short time is repeated many times to improve statistics for the temperature 

versus time curve.  A short velocity rescale and a few equilibrium steps are used between 

each heating cycle. An average temperature-time trace can be generated from multiple 

simulations.  Here we have repeated the temperatures jump until the average temperature 

decay is reasonably smooth as shown in Figure 1.  The resultant temperature-time profile is 

compared to the solution of the transient energy equation, in a least squares sense, in order 

to obtain the thermal conductivity. 
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Figure 1: Typical transient temperature trace for �T 350 K and ��  25 kmol·m3 with a 

T�  of 450 K showing the averaged simulation temperature (points) and the solution to 

equation 7 with regressed � (line). 

 

The transient energy equation balance may be written for a fixed volume element [12] as  
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where v  is velocity, �  is density,  is the heat flux, q p  is pressure and � is the stress 

tensor.  As is commonly done, the initial molecular momenta are normalized to eliminate 

any net momenta.  While the artificial temperature jump could induce some net convective 

flow owing to any localized velocity within the selected volume element at the instant the 

velocities are rescaled to simulate the heating pulse.  However, our simulations show that 

any such induced local molecular momentum is small and does not produce any directional 

bulk flow during the simulation of the temperature decay. 

 

For the case of no bulk velocity, we can simplify equation 4 to 
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where Fourier’s law, applied to the spherically symmetric case of our heated volume 

element, has been used to obtain the second equality.  Expansion of the time derivative on 

the left gives 
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where c  is the constant volume heat capacity.  We retain only the first term on the right 

because 
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where we have also assumed that the thermal conductivity is independent of temperature.  

Although �  is a function of temperature, we can still use equation 7 by treating �  as an 

effective thermal conductivity for the particular temperature jump applied.  However, the 

value of �  obtained may then depend upon the magnitude of the temperature jump 

employed. 

 

Equation 7 can be solved for ),( �tT�T  at the center of the heated volume by application 

of appropriate initial and boundary conditions.  The initial condition is a step function in 

temperature between the bulk fluid temperature and that of the heated volume.  We use a 

Neumann condition of zero flux at the center of the heated volume and a Dirichelet 

condition at a distance of 2
L  from the heated center, where L  is the simulation cell linear 

dimension.  The best value of �  is obtained from a least-squares fit of the solution obtained 

from equation 7, ),( �tT�T , to the transient temperature trace obtained from the 

simulation. 

 

The regression of �  from equation 7 requires �  and c .  The density is fixed as an 

independent variable of the simulation but  may be determined from the simulation.  The 

energy fluctuations in a canonical simulation using are related to c  by 
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Our procedure has been to first run the simulation in the canonical ensemble and calculate 

 from equation 3.  The simulation is then changed to a microcanonical simulation and the 

previously discussed procedure of heating a small volume is followed.  The simulated value 

of 

vc

�  is then obtained by adjusting it to give the best match, in the least squares sense, of 

the simulated temperatures to equation 7. 

 

The value of �  obtained from this procedure is actually the residual thermal conductivity, 

, because all of the potential energy terms in the simulation are relative to infinite 

molecular separation.  For example, the potential energy is obtained from the sum of the 

pair potentials, which are zero at infinite separation.  Likewise, the energy transfer in the 

simulated system is relative to the zero density of infinite volume fluid.  Because we track 

the temperature of a heated volume element that at all time includes the same heated 

molecules, there would be no heat transfer from that volume element for a zero-density 

system because there would be no interactions between the heated molecules and the 

surrounding fluid and  would be zero.  The zero-density thermal conductivity, � , can be 

obtained from the well-known Chapmon-Enskog [13] solution of the Boltzmann equation: 
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where  �  is in units of W·m0 -1·K-1, T is in units of K,  is the molecular weight in 

kg·mol

MW

-1, �  is the characteristic dimension of the molecule in units of m, and  is a 

dimensionless collision integral.  The actual thermal conductivity is then obtained from the 

V�
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sum of the residual thermal conductivity obtained from the simulation and the zero-density 

Chapmon-Enskog solution, 

0
��� ��

r . (9) 

3. Optimization of the Proposed Method 

 

The efficiency of this transient simulation method depends upon three main: simulation 

size, size of the heated volume and the magnitude of the temperature jump.  We have 

optimized each of these variables to give the best �  accurate per CPU time.  The number 

of molecules ( ) used in the simulation determines the simulation size.  The size of the 

heated volume (V ) is determined by the average number of molecules heated divided by 

the number density of the simulation. 

N

H

 

The simulation size would ideally be small in order to minimize CPU time, but it must be 

large enough that the heated fraction of the simulated fluid is small.  The heated volume 

also needs to be small so that the simulation size can be minimized, but it must contain 

sufficient molecules that the calculation of a temperature in the heated volume is 

meaningful.  The magnitude of the temperature jump must be larger than the typical 

fluctuation of the temperature of a microcanonical simulation.  The larger the temperature 

jump the shorter the simulation time due to the larger temperature decay obtained from a 

single simulation.  If a small temperature jump is used then more simulations must be 

averaged in order to produce a smooth temperature decay. 
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The thermal conductivity of argon was simulated to optimize the parameters in this method.  

A central composite design experiment [14] was setup to optimize the simulation size, size 

of the heated volume and the magnitude of the temperature jump.  These variables were 

optimized to give the most accurate thermal conductivity data in the liquid, vapor and 

critical regions.  Table I gives the specific conditions at which the variables were 

optimized.  Table I also shows the significant factors, the standard deviation of the thermal 

conductivity and the required number of integrations steps, which will be discussed later in 

the paper.  The conditions at which the central composite design experiment was run are 

shown in Table II.   The data obtained from the central composite design were fit to, 
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where  is the simulation size,  is the heated volume,  is the temperature jump and 

 are regressed constants.  The significant factors at the 95% confidence level that 

reduced the error between the simulated thermal conductivity and the thermal conductivity 

of argon correlated by Hanley [15] are given in Table I.  The reason that there are no 

significant factors in the vapor region is that the reduced thermal conductivity obtained 

from the simulation is small compared to the zero-density portion of the reduced thermal 

conductivity, .  Both  and  would be significant in the vapor region if the 

confidence level was decreased to 90%.  The regression showed that the heated volume 

must be minimized.  When the heated volume is minimized the effect of the other 
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significant factors is also reduced.  The factors were optimized to simultaneously minimize 

the error in all three regions. 

Table I: Optimization Conditions and Results 

Regions T /K � /kmol·m3 Significant Factors 
� /W·m-1·K-1·103 

Average (Standard 
Deviation) 

Integration 
Steps 

Required 

Liquid 90 35 2
2

2
212 ,,·, XXXXX   134.7 (4.70) 32000 

Vapor 100 1 None 7.8 (0.225) 83000 
Critical 350 30 2

332 ,, XXX  107.1 (4.57) 69000 
 
Table II: Central Composite Design 

N /molecules HV /molecules T� /K 
100 3 300 
1000 3 300 
100 3 1000 
1000 3 1000 
100 10 300 
1000 10 300 
100 10 1000 
1000 10 1000 
550 7 650 
550 7 650 
550 7 650 
50 7 650 

1328.5 7 650 
550 7 44.5 
550 7 1255.5 
550 1 650 
550 13 650 
550 7 650 
550 7 650 
550 7 650 

 

The optimized values for the simulation size, size of the heated volume and the magnitude 

of the temperature jump are 100 molecules, 3 molecules and 450 K, respectively.  The 
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simulation size and heated volume allow for quick simulations.  The optimized magnitude 

of the temperature jump allows for quick convergence but also results in an extremely large 

temperature gradient.  The critical region is the only region in which the size of the 

temperature jump appears to be significant.  Figure 2 shows the simulated thermal 

conductivity in the critical region for a range of temperature jumps.  The regressed thermal 

conductivity is constant for temperature jumps below 650 K.  The optimized temperature 

jump, 450 K, is well below this value.  A large temperature jump may also cause velocity 

gradients.  Which would invalidate equation 7.  Because only a small number of molecules 

are heated, one would expect bulk velocities to form very slowly.  The time that it takes for 

the temperature decay data to be recorded is significantly shorter than the time that it would 

take for a bulk velocity to form. 
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Figure 2: Dependence of the Thermal Conductivity on the Temperature jump in the 

Critical Region. 

The precision of the new method was determined by running ten simulations all of which 

had different starting configurations at each of the conditions listed in Table I.  The mean 
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and the standard deviation of the ten simulations are given in Table I.  These standard 

deviations in the simulated thermal conductivity correspond to a confidence interval of ± 

2.5%, ± 2.06%, and ± 3.05% at the 95% confidence level for the liquid, vapor, and critical 

regions respectively.  The last column in Table I shows the average number of integration 

time steps in the ten simulations that are required to simulate the thermal conductivity.  As 

expected the number of integration steps increases as the density of the simulation 

decreases. 

4. Results for Lennard-Jones Fluid 

 

This new procedure was used to calculate the thermal conductivity of Lennard-Jones (LJ) 

fluid.  The results using 85.121�

bk
�  K and � angstroms for argon are given in 

Table III.  The ideal gas (IG) values in Table III were predicted using equation 8.  The 

shaded area is the two-phase region.   

429.3�

Table III: Simulated Thermal Conductivity of Argon in W·m-1·K-1·103 

  T/K 
  90 95 100 150 250 350 450 600 750 900 

IG 5.69 6.01 6.34 9.55 15.19 19.92 24.07 29.56 34.42 38.86 
1 7.1 7.4 7.8 11.0 16.8 21.5 26.0 31.5 37.0 41.9 
5    15.3 21.0 26.9 32.4 37.3 43.5 48.8 
10    26.7 31.1 33.9 41.1 48.8 53.1 55.8 
15    40.9 39.7 44.8 50.6 53.5 64.9 68.2 
20    43.5 52.3 58.9 62.1 72.5 79.9 83.7 
25 79.8 59.8 63.5 61.4 64.7 73.3 82.8 96.8 100.3 99.3 
30 90.0 86.6 84.6 95.4 102.7 107.8 112.7 122.5 130.5 119.3 

ρ/
km

ol
·m

-3
 

35 134.7 138.4 134.5 140.6 134.7 154.4 158.1 156.0 155.7 152.2 
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The error between the values in Table III and the correlation for argon proposed by Hanley 

[15] is shown in Table IV.  The Hanley correlation is applicable only to 400 K.  The largest 

error between the correlation and the simulated data is seen at 150 K and 10 kmol·m-3, 

which is in the critical region (  K and  kmol·m86.150�cT 4.13�c�
-3) for argon.  Near the 

critical point the correlation length of the fluid diverges.  The size of the simulation cell 

must be twice the size of the correlation length to model the fluid accurately when using 

periodic boundary conditions.  In order to maximize the efficiency of the simulation a small 

simulation cell was used.  Our results in the critical region are expected to suffer from the 

inability to adequately simulate over the actual correlation length. 

Table IV: Error Between Simulated LJ Thermal Conductivity and the Correlation 

Proposed by Hanley [15] 

  T/K 

   90 95 100 150 250 350 
IG 0% 0% 0% 0% 0% 0%
1 5% 5% 1% -2% -3% -3%
5       17% -1% -7%
10       33% -12% -6%
15       16% -2% -2%
20       9% -1% -2%
25 -16% 12% 6% 7% 10% 10%
30 4% 6% 7% -6% -1% 7%

ρ/
km

ol
·m

-3
 

35 -6% -10% -8% -14% 5% 4%
 

Experimental thermal conductivity data has been compiled for argon. [16,17]  The 

simulated data points in Table III were interpolated to match the conditions of the 

experimental data.  The error between the interpolated simulation data and the experimental 
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data is shown in Figure 3.  As the density increases error in the simulated thermal 

conductivity goes from a positive to a negative bias. This is consistent with the fact the 

thermal conductivity in portions of the fluid is actually being sampled at a slightly higher 

temperature than the bulk temperature because of the temperature jump.  Liquid thermal 

conductivity of argon decreases as the temperature increases and the vapor thermal 

conductivity increases with a temperature increase.  These temperature trends are consistent 

with the S-shaped bias in the error. 
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Figure 3: Error between Simulation and Experimental Data. [14, 15] 

 

Previous researchers have simulated the thermal conductivity of argon using EMD and 

NEMD techniques.  The results of previous researchers are given in Table V along with the 

results from this work.  The values reported for this work have been interpolated from 

Table III.  The data from the rapid transient method developed here compares favorably 
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with the correlated experimental data and is generally as good or better that that generated 

using other simulation methods  

Table V: Comparison of Proposed Method to Previous Methods 

λ (W·m-1·K-1·103) 

T/K ρ/kmol·m-3 Volegsang 
[3] (EMD) 

Paolini [7] 
(NEMD 

Heys [10] 
(NEMD)

Muller-
Plathe [5]
(NEMD)

Hohesisel 
[18] (EMD) 

This 
Work 

Correlation 
[15] 

85.30      35.01  - - - 139.6-
121.2 143.9 129.10 131.0 

88.95      34.77  127.1 126.8 108.6 - - 127.06 126.6 
114.54      29.44  94.2 - 70.8 - - 84.77 86.2 
154.75      26.77  70 - 56.2 - - 71.89 73.2 

 

5. Conclusions 

 
A new transient method for calculating thermal conductivity from molecular dynamic 

simulations has been devised.  The efficiency and simplicity of the method are strong 

advantages, allowing quick repeated simulations on small systems without the addition of 

added boundary conditions or modification to the equations of motion.  The method has 

been benchmarked by comparison to previous simulation as well as correlated experimental 

argon thermal conductivity data.  The simulated thermal conductivity values compare 

favorably with both previous simulations and the correlated values.  The new method is 

able to predict thermal conductivity in the liquid, vapor and critical regions with the 

exception of near the critical point.   
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We assess error associated with this method as approximately ± 10%.  The time that is 

required for the simulation depends upon the density of the simulation.  A low density fluid 

take much longer to simulate then a high density fluid.  The number of integration steps 

required, using a time step of when a 5·10-15 s, to obtain a reasonably smooth average 

temperature decay is 32000, 69000, and 83000 at densities of 35, 30, and 1 kmol·m-3 

respectively.   
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