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ABSTRACT 
Molecular dynamics simulations based on embedded-atom-method (EAM) are 

applied to calculate the density, specific heat and self-diffusion coefficient of liquid 
cobalt at temperatures above and below the melting temperature. Simulations indicate 
that the density fits into ρ = 7.47- 7.6 ×10-4(T-Tm) gcm-3, and the self-diffusion 
coefficient is given by D =63.9678 exp (-40843.03/RT) m2/s. Dissimilar to the linear 
dependence of the density and the Arrhenius dependence of the self-diffusion coefficient 
on temperature, the specific heat shows almost a constant value of 32.509±0.194 
J/mol/K within the temperature range of simulation. Calculations of the self-diffusion 
coefficient also indicate that the Green-Kubo expression and the generalized Einstein 
equation produce the close results. The simulated properties of liquid cobalt are 
compared with some experimental data and the estimated values from empirical 
expressions at temperatures above the melting point. Comparisons show reasonable 
agreements.  

KEY WORDS: density; liquid metal; molecular dynamics simulation; self-diffusion 
coefficient; specific heat 
 
1. INTRODUCTION 

Specific heat, density and self-diffusion coefficient are of especial interest in the 
fields of materials science, applied physics, and fluid science [1-3]. With these three 
parameters in undercooled regime, one can quantitatively predict the processes of 
crystal nucleation and crystal growth during rapid solidification [4,5]. Furthermore, the 
knowledge of these three parameters in the undercooled region can also reveal the local 
structure of the undercooled liquid [6], and thus be used to predict the glass transition 
trend of metallic melts [7] and to determine the ideal glass transition temperature [8]. 
However, for liquid metals, due to the experimental difficulties in dealing with the 
metastable state of undercooled melts at high temperatures, there are few experimental 
data of these three parameters in undercooled regime available. The accuracy 
knowledge of the thermophysical properties not only demands the further development 
of experimental techniques, such as the containerless processing technique in 
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combination with non-contact diagnostic method, but also demands the development of 
reliable predictive methods.  

Molecular dynamics simulation (MDS) with a potential model from the 
embedded-atom-method (EAM) is proved to be a powerful approach to the simulation 
of liquid metals, which was developed two decades ago and has been successfully 
applied to simulate the structure, surface, dislocation, and phase transformation of solid 
or liquid metals [9-11]. It was also applied to predict thermophysical properties of liquid 
metals at some extreme cases [12,13]. 

Cobalt is a ferromagnetic transition metal with wide applications in the aerospace 
industry. Nevertheless, there is a lack of experimental data of specific heat, density and 
diffusion coefficient, especially in the undercooled region. The purpose of this paper is 
to carry out simulations on these three parameters, especially in the undercooled region. 
The experimental data available are used for comparisons. 

2. EMBEDDED-ATOM METHOD 

The embedded-atom method (EAM) is a semi-empirical technique for computing 
the energy of an arbitrary arrangement of atoms. According to the EAM potential model 
originally developed by Daw and Baskes on the basis of the density function theory 
[14,15], the energy of an atomic system can be written as 
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where Fi  is the energy for embedding atom i in an electron density iρ ,  ji ,φ  a 
repulsive two-body potential between atoms i and j, and (rjf i,j) the contribution of 
atom j to the electron density at atom i at a distance ri,j from atom j. 
    According to Johnson [16], F (ρ), Φ(ρ), and f(r) are expressed as: 
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where Ec is the cohesive energy, b the nearest neighbor distance, Ω the unit cell volume, 
and ri , Ni  the radius and the number of atoms in the ith neighbor shell. 

All of the model parameters used during simulations are listed in table 1 [17]. 

Table 1. The model parameters 

Model parameter 

b(Å) Ω (Å3) ρe fe Sγ Sβ γ β α 

2.503 11.09 0.3956 0.02849 12.806 13.886 7.745 5.933 5.004
 

3. SIMULATION DETAILS 

The density and specific heat are simulated applying MD simulation method under 
constant pressure and constant temperature (NPT ensemble). During simulation, the 
pressure is set to zero. At the beginning of the simulation, 500 atoms were arranged in a 
face-centered cubic box subject to periodic boundary conditions in three directions. The 
time step was s. In order to get equilibrium liquid state in the simulation, the 
system started at 2000 K, which is well above the melting point. This temperature was 
kept constant for 50,000 steps. Then the quenching process with a cooling rate of 

 was carried out to calculate the enthalpy H and density ρ at 100 K 
intervals of temperature. At each temperature, 30,000 steps were carried out for 
equilibrium. Then 20,000 additional steps were taken to calculate the enthalpy and 
density. The simulation was stopped at 1200 K, which is 576 K lower than the melting 
point. Since the quenching process is very fast, the metal stays in undercooled liquid 
state. 

151092.3 −×

111105 −⋅× sK

The density can be derived from the Virial expression of pressure [18]: 
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where N is the number of atoms, ρ the density, MA the absolute mass of one atom, V the 
volume of the simulated liquid metals, kB Boltzmann constant, T the temperature, fij the 
force between atom i and atom j, and < >ensemble average. 
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Specific heat can be determined from the differential of the enthalpy:  

        ( )
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p =C                              (10) 

As to the self-diffusion coefficient D, there are two calculation methods [18]. One is 
to calculate from the Generalized-Einstein (GE) equation  
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where rj(0) is the initial position of jth particle, and rj(t) the position of jth particle at 
some later time τ. 
The other method is to calculate the self-diffusion coefficient from the Green-Kubo 
equation (GK): 
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where )0(jv is initial velocity vector for the jth particle, and )(τjv  the velocity vector 

at some later time τ . 
The simulations of self-diffusion coefficient were run using a microcanonical 

ensemble (constant N, V and E). The volume was selected in such a way that the 
average pressure equaled zero. In order to obtain reliable average values for Eqs. (11) 
and (12), we utilized the algorithm of overlapping-time-interval correlation averages 
proposed by Rapaport[18]. The results for the self-diffusion coefficient was calculated 
using an average of 600 individual correlation functions spaced 0.012 ps. For each 
autocorrelation function calculated, the simulations lasted approximately 10 ps. To 
improve the quality of the results, each computation is run for about 600,000 time steps, 
which yields 15 sets of autocorrelation results.  

4. SIMULATION RESULTS  
Fig. 1 presents the relationship between the density obtained from simulation and 

the temperature for pure liquid cobalt in the temperature range from 1200 to 2000K, 
which corresponds to a undercooling of 576K (0.324Tm) and a superheating of 232K. A 
linear regression analysis of the data gives: 

   g cm)(106.747.7 4
mTT −⋅×−= −ρ -3                       (13) 

The experimental data from Smithells Metals reference book [19] were also added to 
Fig.1, which are represented by: 

)(1088.976.7 4
mTT −⋅×−= −ρ  g cm-3                                 (14)  

Comparison indicates that the simulated density is slightly lower than the 
experimental data. The difference is within 3-4%. Owing to the lack of density data in 
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Fig. 2 Calculated enthalpy of liquid cobalt versus temperature. 

Fig.1 Density of liquid cobalt versus temperature. 

the undercooled regime, the deviation between the simulated and measured density 
below the melting point cannot be evaluated. 
   The simulation results for the enthalpy H are shown in Fig. 2. Apparently, the 
enthalpy has a linear dependence of temperature. Data analysis shows that 

TH ⋅±+×−= )29.37.550(1094.6 6  J/kg                       (15) 

This means that the heat capacity is a constant 32.509±0.194 J mol-1 K-1 in the 
temperature range of 1200-2000 K. This result is close to the experimental data of 34.8 
J mol-1 K-1 from Smithells Metals reference book, but about 19% lower than 40.38 J 
mol-1 K-1above the melting point[20], and 40.6 J mol-1 K in the undercooled regime [4]. 
   Fig.3 illustrates the simulation results for the self-diffusion coefficient from Einstein 
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Fig. 4 Dependence of self-diffusion coefficient on temperature. 

Fig. 3 Calculated self-diffusion coefficient at 1800K from
generalized Einstein equation and Green-Kubo expression 

equation and Green-Kubo expression at 1800K. When the correlation time exceeds 
about 3ps, Green-Kubo expression and the generalized Einstein equation produce 
similar results. Shown in Fig. 4 are the results of the self-diffusion coefficient of liquid 
cobalt as a function of temperature. The solid circles are the data calculated in current 
simulation, which are expressed as:  

)03.40843exp(9678.63
RT

D −=  m2/s                     (16) 

where R is the gas constant, 8.314J/mol/K. 
In Fig. 4, the open triangles represent the self-diffusion coefficients predicted by 

Yokoyama [21], and the short dash represents the results predicted from viscosity data by 
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Han et al. according to Stokes-Einstein expression [22]. It can be seen that the simulation 
results in this work lie within the data predicted by Yokoyama and Han et al. from 
empirical expressions. At the vicinity of the melting point, the self-diffusion coefficients 
obtained in this work are in good agreement with the predicted values of Yokoyama and 
Han et al.. Nevertheless, when the temperature is far from the melting point, the 
simulated self-diffusion coefficients deviate from the predicted values. Moreover, the 
larger is the difference between the temperature and the melting point, the larger is the 
deviation between the simulated and predicted data. At 2000K, the simulated 
self-diffusion coefficient is about 10% larger than Han’s value and about 10% smaller 
than Yokoyama’s value.  
 
5 CONCLUSIONS 

Density, specific heat, and self-diffusion coefficient of liquid cobalt at a wide 
temperatures range, especially in the undercooled regime have been predicted with 
molecular dynamics simulations based on embedded-atom-method (EAM). At 
temperatures of 1200-2000K, the densities are predicted by ρ =7.47-7.6×10-4(T-Tm) g 
cm-3, which are in good agreement with experimental results above the melting point, 
within a deviation of 4%. In the simulation temperature range, the self-diffusion 
coefficients show Arrhenius temperature dependence represented by D=63.9678 exp 
(-40843.03/RT) m2/s, which agree well with the approximated values from empirical 
expressions at the vicinity of the melting point. Simulations of self-diffusion coefficient 
indicate that the generalized Einstein equation and Green-Kubo expression produce 
similar results when the autocorrelation time exceeds about 3ps. Compared with the 
density and self-diffusion coefficient, specific heat shows no obvious temperature 
dependence in the simulation temperature range. The predicted value of 32.509±0.194 J 
mol-1 K-1 reasonably agrees with the experimental results. Simulations show that 
molecular dynamics simulation method with EAM inter-atomic potential model can 
predict the thermophysical properties of undercooled liquid metals quantitatively. 
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