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Abstract

Many systems such as protein-virus systems can be modeled simply as a mixture
of hard spheres in a hard rod solution. There is an effective two-body attractive force
between spheres due to the overlap of exclusion volumes from arod by two spheres close
to each other. We calculate the overlap volume of these exclusion volumes, two parallel
spherocylinders, in a one-dimensional integral representation, where the integration is
over the direction of the axes of the spherocylinders. The effective attractive potential is
then calculated from an angular average of these overlap volumes. The calculation can be
performed both for infinitely thin rods and for rods of finite thickness when those rods are
modeled as spherocylinders. From a third integration over distance, we calculate the
second viria coefficient of this system for a variety of length-to-radius ratios, rod-to-
sphere radius ratios, and rod densities. Some observations are presented also on three-
body effects and the presence of arepulsive, non-additive three-body potential.

1. Introduction

The system of hard spheres of radius R immersed in a solution of hard rods of
length L has been of interest as a model of protein-virus and other systems [1]. Thereis
an effective attractive potential energy between two hard spheres from the depletion
volume due to the rods. The volume excluded to the center of mass of arod by a sphereis
a spherocylinder, composed by a cylinder of length L and radius R with hemispherical
caps of radius R at each end. In a sufficiently dilute system, these spherocylindrical
exclusion volumes are nonoverlapping and independent. However, for two hard spheres
sufficiently close to each other (the distance between their centers must be greater than
2R), the exclusion volumes for a rod of a given orientation can overlap each other. The
net volume excluded from the rod by the two spheres is less than twice the individua
exclusion volume for adilute system, and this results in an effective attractive interaction.
The interaction has been calculated in the limits L/R >>1 [2] and L/R<<1[3].

To our knowledge, there is no known analytic expression for the overlap volume
of two paralel spherocylinders. In this paper, we derive a one-dimensional integral
representation of this overlap volume for a given geometry. In coordinates where z is
paralel to the spherocylinder axes, slices of the overlap volume in planes of constant z are
various cases of circle-circle overlap. The areas of these are calculable analytically, and in
general only numerical integration over z is needed to find the volume of overlap for a
fixed orientation of the rod.

It is assumed that the orientation distribution of the rods is isotropic, though other
distributions could be considered. Calculation of the effective potential between two
spheres then requires a second numerical integration over angle. We proceed to calculate
the second virial coefficient of a moderately dense system of spheresin a solution of rods,
which requires a third numerical integration over angle. Yaman et al. [1] derived by a
different method a two-dimensional representation of the two-body potential, but their
method is not applicable to rods of finite thickness.



We are aso interested in the third viria coefficient, the calculation of which
involves considering the overlap volume of three spherocylinders. This leads to a net
repulsive potential, and results will be presented elsewhere. In this paper we only
consider two-body interactions and the second virial coefficient.

2. Interaction Potential

The free energy F of asystem of hard spheresimmersed in afluid of rodsis
F=-k;TInQ Q)
where kg is Boltzmann's constant, T is absolute temperature, and Q is the number of
configurations available to the rods in the system. If we make the approximation that the
rods only interact with the spheres and not with each other, then the number of
configurationsis given by
Q:(V_Vex)NB :VNB(:]-_CBVex/I\IB)'\‘B (2)
where V is the total volume of the system, V¢ is the average volume excluded from the
rods by the spheres, Ng is the total number of rods in the system, and cg = Ng/V is the
concentration of rods. In the thermodynamic limit (i.e, Ng and V — o while ¢z is
constant)
Q =V exp(—c,V,,) (3)

In the case of two spheres, an effective interaction arises between the spheres,
because the volume excluded from the rods by the spheres is greater when the spheres are
infinitely separated than when they are close to each other (i.e., 2Vel® = Ve(r), where
Vel is the volume excluded by the rod by a single, isolated sphere, and Ve(r) is the
volume excluded by two spheres separated by a distance r), due to the overlap of the
excluded volumes when the spheres are close. As a result, when the spheres are close to
each other the free energy of the system is lower. The effective interaction u®(r) of two
spheres separated by a distancer is given by

u@(r) = F(r) - F()

= ke [V, (r) — 2V, © (4)
= —kgTCs <Vqy(r) >
where <V (r)> is the average volume of overlap between the volumes excluded by two
spheres. Because Ve (0 ) > Vg (1), it follows that <V (r)> = 0, and the interaction is
atractive.
In the following section we explain how, for a given rod orientation, V4 can be
expressed in a one-dimension numerical integral representation.

3. Geometry of Spherocylinder Overlap
The overlap volume V excluded from a particular rod in Eq. (4) is the overlap

volume of two parallel spherocylinders oriented in the direction of the rod, each of length
L and radius R. Each spherocylinder is a cylinder with hemispherical caps of radius R at



each end. Our coordinate system is Cartesian with z along the cylinder axes and x=0 in
the plane of the two axes.

A dlice of the overlap volume in a plane of constant z is the area of circle-circle
overlap. This overlap can be calculated analyticaly in al cases. Finding the overlap
volume requires an integral over z, which can in some cases be calculated analytically but
in general must be calculated numerically.

Figure 1. Segment-segment overlap.



Figure 2. Segment — majority small circle overlap.

Figure 3. Full small circle overlap.



Figures 1-3 show the three possible cases of circle-circle overlap: segment-
segment, segment-majority small circle, and full small circle. A segment istheregion
between a chord and an arc (less than Ttradians). |If the radius of the arc is R and half of
the chord length is h, the area of the segment is:

A=R’cos™(h/R) —h(R? - h?)"'? (5)
Segment-majority small circle overlap is shown in Fig. 2, where the arc length of
the circle of smaller radius in the overlap region is greater than Tt In this case, the area
contributed by the smaller circle is that of the full circle minus a segment. Finally, the
large circle can completely enclose the small circleasin Fig. 3.

(tq)

* (—t—q)

Figure 4. Spherocylinder-spherocylinder overlap. The overlap region isoutlined in bold.

Our geometry is shown in Fig. 4. We place the center of spherocylinder 1 at (-t,0,-q) and
the center of spherocylinder 2 at (t,0,q), where overlap occurs only if 0 <t < R. The
centers of the circlesjoining the cylinders and caps are at (-t,0,-s) and (t,0,s), where



2s=2q-L (6)

If sis negative we have cylinder-cylinder and cylinder-cap overlap, while if sis
positive and & + t* < R? we have cylinder-cap and cap-cap overlap, or just cap-cap
overlap.

The overlap volume is symmetric about the origin, so we need only consider the
half in the region z>0. In a plane of constant z, we have overlap of circles from the two
spherocylinders of radii r; and r, respectively, wherefor z > 0, ry <r,

Inthecases< O, if z<|g, thenry (2) =r2(2) = R. The cylinder-cylinder overlap
;/;))Ltéme is simply 4Als|, where A is the segment area given by Eq. (A1) with h = (R* —
Forz>|g,
n(2) =[R*-(z-|9)°1"* ()
and
r,(z) =R. (8
If t < R/2, in an x-y plane of constant z, the overlap volume consists of two
segments of unequal radii but with the same chord length 2h. In this plane, ry, r;, and 2t =
T form atriangle, and h is the altitude of this triangle perpendicular to the side of length t.
We calculate this altitude from the formula for the area of a triangle in terms of its sides,
whereS=r;+r,+T.
Th/2=[S(S-2r,)(S-2r,)(S-2T)]¥?/2 9)
In this case,
h=[T*(R?-2%2)-(z* + T*)|"*IT (10)

For s<0, the cylinder-cylinder overlap volumeis found analytically as
Vg =23[R*cos™(t/R) —t[R? - t?]"?] (11)
The cylinder-cap part of the overlap must be found by numerical integration over z
of the cross-sectiona area, from a lower limit of z =s. For R/2 <t <R, thisintegra is
broken into two parts, the part of segment-segment overlap and that of segment-majority
small circle overlap. The transition occurs wherery, r, and T form aright triangle, which
occursat z = 2s. The maximum z is zme = S+ 2 (tR —t?)Y2

For the case t < R/2, as z increases from O the cross-sections are successively
segment-segment, segment — majority small circle, and full small circle, which occurs
fromz =z« to0z=R +s. Thislast volume may be expressed analytically. A spherical
cap from z = zyto z = R of a sphere of radius R centered at the origin has a volume

V =1(2R*/3-R?%z, +2,°/3) (12)

For positive s, there is either cap-cylinder and cap-cap overlap, or pure cap-cap
overlap, in which case the overlap volume in analytically calculable from Eq. (12). For
cross-sections of circle-circle overlap with cap-cap overlap, Eq. (7) still applies for ry but
in this case, instead of Eq. (8), we have

r,(2) =[R* - (z+9°]"* (13)



and Eq. (9), but not Eq. (10), applies for the geometry of overlap.

Inall cases, r1 =r, at z =0, so as z increases the circle-circle overlap evolves from
segment-segment, to segment-majority small circle, to (if t > R/2) full small circle. There
are several different cases, depending on where the two transition values of z are located
relative to the cap-cylinder plane, but all involve one-dimensiona integrals over z. Even
when there is cap-cylinder overlap, in some cases the overlap is only between the
spherical extensions of the hemispherical caps, so Eq. (12) is applicable.

4. Angleand interparticle distance integrations

We consider the effective depletion force between two hard spheres of radius R and a
polar coordinate system where the z axis is aligned along the vector r between their
centers. The overlap volume depends on r (magnitude) and 6 but is independent of ¢, the
azimuthal angle. Thetransformationtotand qis

t=(rsinB)/2 (14

g=(rcosB)/2 (15)
with s given by Eq. (6). For agivenr and 6, V can be calculated by numerical integration
over z as described above. The angle-averaged overlap volumeis

<V(r)>=[,"V(r,0)sin6dd (16)
where
0, =sSn'(2R/r) if 2R<r<(L*+4R*)"?
0, =cos[(L?/2+r?/2-2R*)/rL] if (L*+4R?*)"?*<r<L+2R (17)

Since the spheres are hard, no overlap is possible for r < 2R, and no overlap of the
spherocylindersis possiblefor r > L + 2R.

In general, for multidimensional integration it is more efficient to use Monte Carlo
integration in more than 4 dimensions, but to use numerical quadrature in fewer than 4
dimensions if the integration limits are known and the integrands are reasonably smooth.
As described above, in the z-integration to calculate V;, we split the integration region
into intervals so that the integrands are analytic within each interval.

We use Clenshaw-Curtis quadrature [7], which has been used extensively in
calculation of collision integrals within the kinetic theory of gases[8,9], and which has the
advantage that a reliable error estimate is calculated along with the integral value. For z-
integration, we set the error estimate as a part in 10%, which typically requires a quadrature
of 8, 16, or 32 intervals. As a check, we have independently calculated overlap volumes
for selected specific cases by Monte Carlo integration for which the code is considerably
simplified, with agreement consistent with Monte Carlo error estimates. For integration
over B and subsequent integration over r, since the integrands are not strictly multiply
differentiable, we use 64-point quadrature. From our experience, integration error should
be within a factor of 3 of the Clenshaw-Curtis error prediction.



When 2R < r < 2R + L, the effective attractive potential between spheres is
proportiona to the angular average of the overlap volume. The second virial coefficient
of such a system with cg rods per unit volume is given by

B=271{[,"" ridr + [, r¥dr{l-exp(c, <V(r) )]} (18)
Although the thermophysical properties of a particular hard-body system are

independent of temperature, here cg plays a role similar to the usual role of 3 = 1/kgT in
thermodynamics.

This integral can be evaluated rapidly by multiple Clenshaw-Curtis quadrature.
Results for a variety of L and cg for D = 0 are given in Table 1. From the Clenshaw-
Curtis error estimate, with alowances made for higher derivative discontinuities in the
integrand, our results are estimated to be accurate to at least within apart in 10°.

5. Calculation for Thick Rods

The discussion to this point has been for infinitely thin rods. We now consider
rods of some small radius D, where D << R. We choose to model these rods as
spherocylinders of length L, so the volume excluded to a rod by a sphere is again a
spherocylinder, of length L and radius R + D. We retain the approximation that rod-rod
interactions may be neglected.

We assume both the spheres and the rods are dilute, and therefore the volume
fraction of each is much lessthan one. Thisimpliesthat
c,TD’L <<1 (19)
We will impose the restriction that the rod volume fraction is less than 0.2, and
alsothat D/R < 0.2.
The calculation is basically the same as before, except that while the exclusion

volumes can overlap if r > 2R, those spherocylinders have radius R + D, and the upper
limit of integration of Eqg. 16 isnow 2R + 2D + L, and Eq. 15 becomes

O =T/2 if 2R<r<2(R+D)
0, =SN[2(R+D)/r] if 2(R+D)<r<[L?+4(R+D)*]"?
—_ -1 2 2 2
Gmax = COs {L [2+7r /2_2(R+D) ]/2”_} if [L2+4(R+D)2]l/2 <r<L+2(R+D)
(20)

Table 1 also lists calculated values of the second viria coefficient for finite D.

6. Conclusions

We have derived a two-dimensional integral representation of the depletion force
in a system of hard spheres and hard rods, both infinitely thin and of finite thickness.
From this, we have calculated by numerical quadrature the second virial coefficient of that
system for a variety of parameter values. In future work, we will present a similar



calculation of the third virial coefficient, including a nonadditive, repulsive contribution.
While theoretical results have suggested the occurrence of flocculation in this system,
experimental results have not shown flocculation [10,11]. We are in agreement with
Yaman et a. [1]that direct calculations of the potentia for al L/R can lead to different
conclusions than approximations to the potential. Furthermore, the nonadditive, repulsive
three-body term in the potential should also serve to inhibit flocculation.
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Table 1: Second Virial Coefficient

LIR cg B/R®

D=000 D=005 D=010 D=0.15

1.0 010 16,519 16.469 16414  16.353
10 020 16.279 16.176  16.062 15.938
1.0 050 15533 15261  14.951 14.609
1.0 100 14206 13603  12.892 12.080
20 010  15.389 15345 15294 15238
20 020 13973 13876  13.762 13.636
20 050 9.394 9.074 8.686 8.246
20 1.00 0.491 -0.493 -1.733 -3.203
50 0.10 5.790 6.313 6.747 7.112
50 020 -6.005 -5.002 -4.190 -3.526
50 050 -47559 -45595 -44.299  -43.534
50 100 -148.059 -148917 -153.167 -160.665
100 010 -31.331 -28.016 -25.181 -22.732
100 020 -84.963 -78475 -73.028  -68.413
100 050 -297.444 -285683 -278515 -275.261
10.0 1.00 -1106.890 -1199.623 -1374.450 -1650.265




