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I. INTRODUCTION

The phenomenon of filling, that is of wetting modified by grooving or pitting substrates, has been a subject of considerable
recent work [1–11], motivated by both potential practical applications and by what has turned out to be an interesting new type of
phase transition [12, 13]. In a typical situation, the region of parameter space in which there is filling contains, and is larger than,
the region of wetting. This supplements the tuning of wetting effected by chemical means [14]. The key intellectual challenge
is that interfaces between coexisting phases display spatial fluctuations about their mean position which diverge with the system
size. Thus, theories which neglect these or restrict them by uncontrolled approximations should be treated with considerable
caution. To date, there is just one exactly solvable model starting from a molecular-level Hamiltonian [8] (the rectangular Ising
Ferromagnet) which displays such a filling transition. This Ising calculation complements those carried out for regular wetting
[15, 16]; it discusses both the thermodynamics of the transition, the exponent characterising divergence of the film thickness
and the contact angle (in an appropriately modified definition), which satisfies the modified Young’s Law. The thermodynamics
comes from a full evaluation of the canonical partition function. The transition may also be investigated in the traditional, but
possibly approximate way, from the intersection in parameter space of free-energy curves estimated for interfaces either crossing
the corner through the bulk or bound to the walls. This means we assume the basic geometrical structure of interfaces and their
change in the transition. Further, this estimation uses bulk angle-dependent surface tensions and wall-binding incremental free-
energies, which have to be calculated for the method to be useful. Clearly, there are serious approximations: fluctuations which
interpolate between the two basic configurations are ignored, as are line and ‘corner’ tensions. It is important to note, though,
that large fluctuations are not inhibited, since a proper calculation of the surface tension, for instance, allows for them. What is
not considered is that the interface might ’tunnel’ between the shortest path and that bound to the walls in order to decrease free
energy. Further, the interface might even follow a curved path.

Given these approximations, it is reassuring that the phase diagram is indeed recaptured correctly [6, 8]. Since finding an
exact solution to any wetting problem is a lucky accident and the result of considerable labour, a different approach is desirable.
Such an approach could, for instance, involve either Monte-Carlo simulations [9–11] or extending the free energy technique as
outlined above. We do both in this paper, first by finding an exact solution for wetting and surface tensions in the triangular
lattice. This allows us to locate the filling phase transition line by the free energy method and to check a conjecture for universal
characteristic of the shift in boundary between wetting and filling (this is exact in the free energy construction described above)
[6]. The reader may well ask why the calculation for the filling transition in the square lattice case [8] cannot just be repeated for
the triangular lattice. The problem is that form factors are needed in the basis defined by eigenvectors of the transfer matrix for
the triangular lattice on a half line. Not even the eigenvectors are yet known in this case, so the rest of the argument is academic.
This is why we are advocating a critical extension of other techniques available.

II. TRIANGULAR LATTICE SOLUTION

This is the most natural two dimensional lattice to consider, from a packing point of view, but the spectrum of the transfer
matrix had not been obtained [17] in a convenient form for the analysis of the surface properties until now. Thus, we encounter
a Bogoliubov-Valatin transformation [18, 19] closely analogous to that in the square lattice case [20]. As shown in Fig 1, if
we have the spectrum of the (1,1)-direction transfer matrix (which is denoted T (1,1)(K1,K2)) [21], analogous results follow for
the triangular lattice by bringing in the transfer operators for the horizontal K 3 bonds, denoted V2(K3). Thus the transfer matrix
between the first and second row is

W (K1,K2) = V2(K3)
1
2 T(1,1)(K1,K2)V2(K3)

1
2 (1)

and the transfer matrix between the first and third row is

V = W (K1,K2)W †(K2,K1). (2)
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FIG. 1: A schematic diagram of the lattice showing the orientation of the bond labels, Kj, and the surface field, h.

With the usual decomposition into odd and even Fermion number subspaces, this can be written in canonical form as

V± = Λmax(±)exp{−∑
ω

λ(ω)G†(ω)G(ω)} (3)

with eiMω = ∓1, ω∈ (−π,π] and

G†(ω) = cosθ(ω)F†(ω)− isinθ(ω)F(−ω) (4)

The transformation angle is given by

e2iθ(ω) = −eiω

[
(eiω−A�)(eiω−B−1

� )

(eiω−A−1
� )(eiω−B�)

] 1
2 (B�

A�

) 1
2

(5)

with A� = exp2(K∗
3 +(K+

3 )∗) ,B� = exp2(K∗
3 − (K+

3 )∗) where ∗ denotes the usual Onsager duality and K +
3 (and mutatis mu-

tandis K+
j ) being given by

cosh2(K+
3 )∗ = cosh2K1 cosh2K2 + sinh2K1 sinh2K2 cosh2K∗

3 (6)

This is the star-triangle relationship in disguise [22]. The final result needed is

e−λ(ω) =

(
C− e−γ�(ω)

C− e+γ�(ω)

)(
sinh2K1 + e−iωsinh2K2

sinh2K2 + e−iωsinh2K1

)
(7)

with C = sinh2K1 sinh2K2 sinh2K+
3 /sinh2K3 and γ�(ω) ≥ 0 with

coshγ�(ω) = cosh2K3 cosh2K+
3 − sinh2K3 sinh2K+

3 cosω (8)

This should be contrasted with the usual Onsager γ function given by

coshγ(ω) = cosh2K∗
1 cosh2K3 − sinh2K∗

1 sinh2K3 cosω (9)

Note that if K1 = K2 then V = V † either by inspection of Fig 1 or by direct calculation. The similarity with the elements of
the Onsager hyperbolic triangle will turn out to be very useful, in particular the al Kashi formulae for such triangles; it is not
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FIG. 2: Hyperbolic triangles in the Poincaré unit disc model for the triangular and rectangular lattices.

accidental but more detailed work to reveal it will be given elsewhere. Using the form of (5),(7) and (8), we just reel in the
results: firstly, the incremental free energy τ p for a domain wall starting at (1,0) and ending at (s + 1,0) in an edge along the
(1,0) direction in Fig 1 with surface field h is given by

τp = − lim
s→∞

1
s

log
( 1

2π

∫ 2π

0
eisω f (ω)dω

)
(10)

with

f (ω) = i tan(δ∗�/2)
eγ�(ω) − e−4K3w�

eγ�(ω) −w�
e2K3 (11)

where δ∗� = 2θ(ω)−ω+πfrom (5) and w� is the wetting parameter given by

w� = e2K3(cosh2K+
3 − sinh2K+

3 cosh2h) (12)

The formula for f (ω) in the rectangular case has δ∗
�(ω) replaced by δ∗(ω) and w� replaced by

w = e2K3
cosh2K1 − cosh2h

sinh2K1
(13)

The function δ∗
�(ω) is given by (see Fig 2)

sinh2K3 sinhγ�(ω)cosδ∗�(ω) = cosh2K3 coshγ�(ω)− cosh2K+
3 (14)

and

sinω
sinhγ�(ω)

=
sinδ∗�(ω)

sinh2K+
3

(15)

The function f (ω) has simple poles when γ�(ω) = logw�, for which ω= ±iv0, mod 2πwhere

v0 = iγ̂�(i logw�) (16)

and the function γ̂� being given by (8) with K3 and K+
3 replaced by their dual values. Provided w� > 1, this is nearer the

imaginary axis then the branch points of tan(δ∗
�/2) are ω = ±2i(K∗

3 − (K+
3 )∗),±2i(K∗

3 + (K+
3 )∗), which characterise bulk on

correlation function decay on the triangular lattice; thus this singularity is called the wetting pole (more correctly, the partial-
wetting pole). In this paper, we are interested only in the case, w� > 1.

The analogy between (11) and (12) the square lattice case [15], which is recaptured precisely as K 2 → 0, is striking. The
length scale normal to the substrate is

�⊥ =
1

λ(iv0)
(17)

Again, the K2 → 0 limit gives the usual square lattice result �⊥ = 1/γ̂(iv0) with the rectangular-lattice Onsager function γ̂� given
by (8) with K3 replaced by K1 and K+

3 by K∗
2 .

For an interface with mean direction along (1,0) in Fig 1, the surface tension is

τ(1,0) = 2(K∗
3 − (K+

3 )∗) (18)

as given by Fisher and Ferdinand [23]. To analyse filling in the 120 ◦ wedge, we also need τ(1,1). For brevity, we give the result
for the case Kj = K, j = 1,2,3. This is

τ(1,1) = λ(0) = 4K + 2logsinh2K (19)
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III. THERMODYNAMICS FOR DIFFERING GEOMETRIES

Once the thermodynamics of wetting is established, we can derive from it the filling conditions for the respective geometries
by simple but, in principal, approximate thermodynamical arguments following the methods described earlier [6]. The idea
is to compare the interfacial free energies of the non-filling and filling configurations at the transition temperature by using a
macroscopic filling condition. For the 60◦ wedge this is particularly simple, as the interface on average always follows a lattice
direction, and we derive

τ(1,0) = 2τp (20)

for the isotropic lattice.
For the 120◦ wedge the construction is not so simple as we must take into account the fact that the interface in the filled state

will, on average, cross the lattice at an angle of π
6 . The equivalent statement is hence

τ(1,1) = 2τp (21)

where the (1,0) and (1,1) directions are both shown in Fig 3 and the τ’s have been normalised appropriately.
As noted by Parry et al. [6] a useful quantity of interest, which is dependent only on the wedge opening angle 2ψ (see Fig 3)

as we approach the triangular lattice bulk critical point, T �
C , is the ratio R(ψ), defined by

R(ψ) = lim
T→T�

C

hF

hW
(22)

where the h fields are the critical fields in the wetting and filling cases respectively. These fields are derived from the thermo-
dynamic conditions and in the square case the ratio and its subsequent limit can by derived analytically. In this limit the lattice
gains fluid isotropy and R(ψ) takes the following simple form

R(ψ) =
√

2sin
ψ
2

(23)

for which the value of (2 +
√

(2))−
1
2 was confirmed in the square case. For the triangular cases we thus predict R( π

6 ) =

(
√

3− 1)/2 and R( π
3 ) = 2−

1
2 . In the triangular case the algebraic problems are more significant, and so a symbolic computer

solution is more appropriate (Mathematica). We implemented and solved the quartic equations (20) and (21) for h F(T ) and also
the corresponding wetting equation, τ = τ p for hW(T ) and took the limit of equation (22) resulting 0.3660 and 0.7071 for 60 ◦
and 120◦ opening angles respectively. These values agree with (23) and thus confirm the conjecture for the case being examined.

IV. NUMERICS

The filling conditions of (20) and (21) presented in the previous section are based on a thermodynamical argument. To test if
this argument is reasonable, we perform Monte-Carlo simulations to get independent estimates for the filling phase boundaries.

Defining a phase boundary for filling using conventional Monte-Carlo methods would be a daunting task because one would
be forced do a number of simulations with different surface fields and temperatures. Instead we use N-fold implementation of
the Wang-Landau sampling [24] introduced by Schulz et al. [25]. In Wang-Landau sampling, a random walk in energy or any
other parameter space (a point that will be exploited later) is performed to get estimates for the density of states of the parameter
in question. Schulz et al. successfully combined this algorithm with the N-fold Monte-Carlo method.

Our simulated system is depicted in Fig 3 and it has following Hamiltonian:

H = −K
2 ∑

n.n.

σiσ j −h ∑
i∈W1

σi + h ∑
i∈W2

σi (24)

where the first sum is over nearest neighbours, h represents the strength of the surface field and spins on the boundary belong
either to set W1 or to set W2. We assign the boundary spins depending on whether we study 60 ◦ or 120◦ opening angle.
Furthermore we consider only the isotropic case, i.e. with coupling strength K = K 1 = K2 = K3.

After performing simulation with the Hamiltonian above, we have an estimate for the relative density of states g(E(h)) for
one value of the surface field. This function can be made absolute by using the knowledge of the degeneracy of the groundstate.
Even though g(E(h)) is indeed a desirable quantity, as it gives an opportunity to find the filling transition temperature T F for
the field h, we still face the problem of defining the transition point for different fields. To overcome this problem, instead of
calculating g(E(h)) for several h’s, we will consider simulating g(E b,ns), where Eb is the bulk energy and ns is the number
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FIG. 3: Simulated systems (see. eq. (24)), on the left system with 60◦ angle and on the right system with 120◦ angle. Part of the lattice is
sketched on the right hand side figure and axis are defined on the left.

of surface spins parallel to the boundary field minus the number of surface spins anti-parallel to the boundary field. We then
calculate g(E(h)) for any h using:

g(E(h)) = ∑
ns

∑
Eb

g(Eb,ns)δ(Eb + nsh−E(h)) (25)

and hence quantities like the specific heat are accessible. It is perhaps worthwhile to explain why turning a one dimensional
problem (g(E(h))) in to a two dimensional one (g(E b,ns)) is useful. When a filling field h is introduced the smooth and
monotonous function g(E) decomposes into a ‘spiky’ function and the number of energy levels increases by a factor ∼ L, the
dimension of the system. The computing time used by the algorithm is proportional to the levels it has to visit. Even though the
time for two dimensional distribution g(Eb,ns) scales quadratically it is still faster to simulate than the original one dimensional
problem, furthermore it is indeed a smooth surface, a fact that seems to reduce errors during the simulation. To enlighten
this further, we perform a post simulation analysis for the case of 40× 40 lattice. In this case g(E b,ns) for the 120◦ opening
angle has altogether 357923 levels and the set of g(E(h))’s, h = 0.05,0.10, . . . ,1.95,2.00 has 1156202 levels. Thus simulating
g(Eb,ns) is about 3 times faster. Furthermore, by exploiting the obvious symmetry of g(E b,ns) with respect to the energy axis,
an additional factor of two can be saved from the computing time. So we are transforming a difficult (in the computational sense)
one dimensional problem to an easier two dimensional problem. This reformulation pays off if the interest is on the system’s
behaviour with many different h’s, as is the case if we want to define filling phase boundaries.

As an indicator of the filling transition in the 60◦ (resp.120◦) case we use the peak in the difference between specific heats of
two systems, one with h = 1 (resp.2) field and one with filling field h < 1 (resp.2), i.e. |C(T ) 1(resp.2) −C(T )h|. In figure Fig 5
one such set of peaks is depicted for 60◦ opening angle. The parameters relevant to the simulations are collected in table I. Even
though no finite-size scaling has been done, the phase boundary extracted from simulations gives reasonably good agreement
with the exact phase boundary, as can be seen in Fig 4. Even small systems (30×30) give accurate results with large filling fields
as was also the case in analogous studies with square Ising lattices corresponding 90 ◦ angles [6, 10]. Simulation results deviate
systematically from the exact phase boundary when field h→ 0, i.e. TF → T ∆

C . This is a typical finite-size effect and as simulation
results with 40×40 system show, this deviation will get smaller when system size is increased. Full treatment of the finite-size
effects will be considered elsewhere but for the moment we confirm the applicability of the thermodynamical argument for the
filling condition with the numerical agreement between simulated and exact phase boundaries with large enough filling fields.

V. CONCLUSIONS

In summary, we have outlined the exact wetting behaviour of a two dimensional Ising Ferromagnet defined on a triangular
lattice. By constructing wedges with opening angles of both 60 ◦ and 120◦ we have established new results, which are almost
certainly exact, for the filling behaviour. These agree with our Monte-Carlo simulations, and with certain prior conjectures
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TABLE I: Simulation parameters, notation as in Ref.[25].
f0 f f inal ε system size # of sub intervals # of runs

0.8685 ≤ 1.0e−8 0.85 30×30 5 10

0.8685 ≤ 1.0e−8 0.85 40×40 8 6
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FIG. 4: Filling in 60◦ and 120◦ and wetting phase boundaries are plotted versus temperature from bulk critical point T∆
C to T = 0. Monte-Carlo

data is shown for 30×30 and 40×40 lattices. Error bars are standard deviations calculated over the runs defined in table I.

on the universality of transition line shift between filling and wetting at bulk criticality. The form of our triangular lattice
calculation implies that finite-size results should be available using existing methods for the surface tension and even for the
wetting transition.
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FIG. 5: The indicator of the filling transition, |C(t)1−C(t)h|, is shown for fields h = 0.05,0.10, . . . ,0.95 for the 60◦ opening angle. Curves are
normalized.
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