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ABSTRACT 

A rigorous electromagnetic model is developed to predict the radiative properties of 

patterned silicon wafers. For nonplanar structures with characteristic length close to the 

wavelength of incident radiation, Maxwell’s equations must be used to describe the 

associated radiative interaction and they are solved by the unstructured finite volume time-

domain (FVTD) method. The basic idea of the FVTD method is to cast the two Maxwell 

curl equations in conservative form, and then treat the six scalar components of the 

electromagnetic fields as conserved quantities via a finite volume approach. In the die area, 

only one period of the structure is modeled due to its periodicity in geometry. To truncate a 

computational domain in an open space, the Mur boundary condition is applied to absorb 

outgoing waves. With the steady state time-harmonic electromagnetic fields known, the 

Poynting vector is used to calculate the radiative properties. To validate the present model, 

a wave scattering problem from a cylinder is considered at first and the predicted results are 

found to be essentially identical to the analytical solution. After that, radiative interactions 

with a nonplanar structure and a patterned wafer consisting of periphery and die area are 

investigated, and predicted reflectivities and absorptivities are found to match available 

other solutions very well, indicating that the present finite volume approach in the time 

domain is accurate to predict radiative interaction with microstructures. 

 

KEY WORDS: finite volume time-domain method, Maxwell’s equations, microstructures, 

radiative properties, silicon wafers. 
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1.  INTRODUCTION 

Rapid thermal processing (RTP) is a silicon wafer processing technology used to 

perform thermal operations in integrated circuit fabrication such as annealing, oxidation, or 

chemical vapor deposition (CVD) on a single wafer. Due to the continuous advances in 

microelectronics, RTP has been considered as a key manufacturing technology to replace 

batch furnace processing. The main advantage of RTP is that its lower thermal budget 

allows smaller devices to be made [1], which is difficult to achieve with batch heating. 

Despite this advantage, the wide acceptance of RTP in industry has been slowed due to the 

difficulty in achieving temperature uniformity across a wafer. Radiative heat transfer is the 

dominant mode of heat transfer in RTP systems and the wafer radiative properties have a 

first order effect on the wafer temperature uniformity. The reflectivity and absorptivity of 

the patterned silicon wafer are known to depend not only on the wavelength and 

temperature but also on the microstructures of dies which can include different materials, 

steps, trenches and bumps [2]. Because the characteristic length of these structures is close 

to wavelength of incident and emitted radiation, the interaction of radiation with the wafer 

must be described by the electromagnetic theory governed by Maxwell’s equations while 

the traditional geometric optics (assuming that the characteristic length is much greater than 

the wavelength) and Rayleigh’s method (assuming that the wavelength is much greater than 

the characteristic length) is no longer valid.  

Maxwell’s equations consist of up to six coupled partially differential equations and 

they are usually very difficult to be solved for realistic problems. Currently, most RTP 

system simulations employ simplified description of interaction of radiation from lamps 

with the wafer. Constant emissivity of the wafer is used in some models; in other a stack of 
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planar layers (thin films) on the wafer is taken into account. Actual microstructures of wafer 

surface, however are essentially nonplanar and nonuniform and include different materials 

with different optical properties as shown in Fig. 1. Therefore, rigorous 2D or 3D 

electromagnetic modeling is essential for an accurate prediction of radiative properties of 

the patterned silicon wafers. So far there have been very few studies available which solved 

the multi-dimensional Maxwell equations for prediction of radiative properties. Erofeev et. 

al. [2] were the first to model the radiative properties of 2D periodic surfaces with 

multilayers. They solved Maxwell’s equations at the normal direction with frequency-

domain finite element method. Wong et. al. [3-4] used the finite difference time-domain 

(FDTD) method to solve the multi-dimensional Maxwell equations for photolithographic 

applications. Their results of interest were the aerial images of the structure instead of the 

radiative properties of a wafer. Very recently, Liu et. al. [5] employed the FDTD method to 

model the interaction of radiation with the multilayered nonplanar microstructures from the 

patterned wafer. Their study showed that the rigorously electromagnetic model was 

essential to accurately predict the radiative properties in the die area. Compared to the 

frequency-domain methods, the time-domain approaches have an advantage that time step 

can be chosen sufficiently small so that electromagnetic wave scattering effects come only 

from neighboring nodes, the solution is thus found by time marching. This approach avoids 

the solving of a large matrix in most frequency-domain methods. In addition, the time-

domain approaches can model either steady or unsteady time-harmonic electromagnetic 

fields while the frequency-domain methods are only limited to the steady case.  

The objective of this study is to predict the radiative properties of patterned silicon 

wafer by solving the multi-dimensional Maxwell equations using the unstructured finite 
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volume time-domain (FVTD) algorithm. From our knowledge, this study represents the first 

to employ the FVTD method to rigorously model the interaction of radiation with the 

multilayered nonplanar microstructures from the patterned wafer. The most popular 

algorithm in solving Maxwell’s equations in the time domain is undoubtedly the FDTD 

method developed by Yee [6]. This method applies the uncollocated electric and magnetic 

fields in both space and time. It was originally developed on uniform Cartesian grid, and 

later was extended to handle body-fitted grids [7, 8]. During the last three decades, the 

FDTD method has been successfully applied for a wide variety of science and engineering 

problems, including radar cross sections, antenna design, microwave circuits, bio-

electromagnetic analysis, power generation and transmission, etc. In 1989, Shankar, et. al. 

[9] developed the FVTD method, which solved Maxwell’s equations using a cell-centered 

finite volume scheme with a CFD-like Riemann solver approach. The FVTD method 

collocates the electric and magnetic fields in both space and time, rather than assigning 

them to two interleaved spatial grids and separating them one-half time step as used in the 

FDTD method. This has the advantage of reducing the complexity in griding, in 

representing material regions, and in extracting near-field for transformation to the far field. 

Also, due to its control volume formulation, the FVTD method can easily handle body-

fitted grids. More recently, this method was further refined and extended to unstructured 

grid [10-12]. With the unstructured grid technology, grid generation for complex 

geometries can be completely automated.  

In this paper, the governing equations and discretization strategy will be presented at 

first, then the boundary conditions associated with the die area of a patterned wafer will be 

discussed. Followed will be the explanation of radiative properties calculation from the 
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electromagnetic fields. Finally, several benchmark problems involving nonplanar structures 

will be investigated to check the accuracy of the developed model. It should be stressed that 

even though the present study is focused on the RTP systems, it can be directly applied to 

many other problems such as spectroscopic instruments, optical property measurement, 

surface contamination, etc., where radiative reflection from rough and patterned thin film 

surfaces is a prominent phenomenon. 

2.  FINITE VOLUME FORMULATION OF MAXWELL’S EQUATIONS 

The time-domain Maxwell equations in their vector form can be written as 
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where � is the permittivity and � is the permeability of the material. The electric current 

density  is related to the electric intensity J E  by 

EJ ��           (6) 

where � is the electric conductivity of the material. 

In solving Eq. (1) with a finite volume scheme, we first need to discretize the 

computational domain into small control volumes. For geometric flexibility, the control 

volume cells are arranged in an unstructured manner as seen in Fig. 2. The cell types vary 

from triangular or quadrilateral for 2D problems and tetrahedral, prism, pyramid, to 

hexahedral for 3D problems. The cell type in each problem can be single or mixed. With 

the domain discretization, we can obtain the following the discretized Maxwell equations 

by integrating Eq. (1) over an arbitrary control volume and also applying the divergence 

theorem, 
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where dV is the volume of the control volume, N is the face number of the volume cell, ni is 

the unit normal of the face i of the control volume, dSi is the area of the face i. Each control 

volume has a cell-averaged Q vector, which is assumed to be the point Q vector at the cell 

centroid. It is easy to see that the face tangential components of the electric and magnetic 

fields determine the time variation of the volume averaged electromagnetic fields. It is well 

known that a simple central difference-type method for Eq. (7) results in odd-even 

decoupling. Instead, CFD-type upwind schemes based on a Riemann solver or intensity-

vector splitting [9, 13] are implemented for unstructured grids. This method can be divided 
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into three components: reconstruction, intensity-vector computation and time integration, 

which are presented in the following paragraphs. 

Reconstruction 

In a cell centered finite volume procedure, the field variables are known in a cell-

averaged sense. No indication is given as to the distribution of the solution over a control 

volume. In order to evaluate the intensity vector at a face, the field variables are required at 

both sides of the face. This task is fulfilled by reconstruction. A least squares reconstruction 

method is selected in this study. This reconstruction is capable of preserving a linear 

function on an arbitrary grid. Given an arbitrary field variable q, the gradients of q are 

constructed by the following least squares reconstruction 
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where n indicates the supporting neighbor cell, c denotes the current cell, and x, y, z are the 

cell centroid coordinates. It can be observed that the matrixes L and � are dependent on the 
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geometry only. If we store Ixx, Iyy, etc., the reconstruction can be performed efficiently with 

one loop over the neighboring cells. 

Intensity-vector Computation 

After the cell-wise reconstruction, the field variables at the left and right side of any 

face can be determined based on a simple Taylor expansion, i. e., 

)( LfLLfL rrQQQ �����                          (11) 
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where rf is the position vector of the face center, rL and rR are the position vectors of the left 

and right cell centroids. Then the intensity vector at the face is computed based on a 

Riemann solver [9]. Given the left and right field variables, the intensity vector at the face 

can be expressed as 
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where c is the wave speed and equal to ��/1 . 

Time Integration 

Once the intensity vector is determined at each face of a control volume, a time 

integration scheme is then needed for Eq. (7) to advance the unknowns in time. In this 

study, the following fourth-order, four-stage explicit Runge-Kutta scheme is used to 

integrate Eq. (7) in the (n+1)-th time step with a time step �t  
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3. NUMERICAL TREATMENT OF BOUNDARY CONDITIONS 

For the application of FVTD method, the computational domain must be confined by 

some means due to computer memory and CPU limitations. It is known the die area of a 

patterned wafer usually shows a periodic geometric profile. So only a single period of the 

structure in the x-direction needs to be modeled in the die area as shown in Fig. 3. In the y 

direction, the die area is exposed to free space and a considerably thick substrate (compared 

to the structure), two artificial boundaries must be introduced to truncate the free space and 

substrate, and they are usually called the absorbing boundary conditions. Ideally, the 

absorbing boundaries should not affect the propagation of electromagnetic waves, i. e., they 

should annihilate the outward-going waves without any reflection. A typical computational 

domain containing periodic and absorbing boundary conditions is shown in Fig. 4 and it is 

excited at the top by a monochromatic plane wave.  

For a periodic structure, the amplitudes of the field components are equal at the left 

and right boundaries (Fig. 4). If the phase differences of the field components between the 

two sides are also equal to 2� m (where m is any integer), the field components are periodic 

function along the x-direction and the boundary conditions can be easily implemented at the 
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left and right sides. It is noted that the periodic boundary condition is not automatically 

satisfied in a periodic structure.  In some RTP systems, the incident radiation mainly comes 

from the normal direction. At this condition, the phases of the field components between 

the two sides are equal, the periodic condition is applied to each field component. For some 

RTP systems, the effect of oblique incidence may have to be taken into account. At such a 

situation, the periodic condition is applied only if the incident angle � is 
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�
1-sin        (17) 

where d is the horizontal period of a periodic structure and � is the incident wavelength. 

The numerical treatment of general oblique incidence is possible for a periodic structure, 

however it is very tedious.  Implementation of general oblique incidence will be one of our 

studies in the future. 

For an open radiation problem, one of the most commonly used absorbing boundary 

condition is the Mur boundary condition [14] and it is applied in this study. The Mur 

boundary condition is based on the one-way approximation of the wave equation initially 

exhibited for acoustic wave by Engquist and Majda [15]. This condition is very easy to 

implement and it absorbs a wave without reflection if the wave is plane and propagates 

perpendicularly to the boundary. More accurate absorbing boundary conditions such as the 

perfectly matched layer (PML) [16-18] technique are available and their implementation in 

the FVTD method will be also one of the future studies. 

4. PREDICTION OF RADIATIVE PROPERTIES 

The FVTD method calculates the transient electromagnetic fields throughout the 

computational domain under the excitation of a monochromatic harmonic field. However, 
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the real results of interest in this study are the radiative properties and they are associated 

with the electromagnetic fields through the wave intensity. The intensity of the harmonic 

wave is defined as a mean value of the Poynting vector and expressed as  

� ��
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where T*=2�/� is the time period of the wave. Then the reflectivity is defined as a ratio of 

the reflected and incident intensities and the transmissivity is defined as a ratio of the 

transmitted and incident intensities. For the transverse electric (TE) polarization, the 

reflectivity Re is calculated at an arbitrary constant y plane above the die structure and has 

the following form: 
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where the incident electric and magnetic fields  and  are provided by a user and inE inH E  

and H are calculated by the FVTD method discussed previously. For unpolarized wave, its 

reflectivity is taken to be an arithmetic average of the reflectivities from TE and transverse 

magnetic (TM) polarizations, that is, 

)(. me RRR �� 50                                                      (20)  

With R given, the corresponding transmissivity T becomes 

RT ��1                                                             (21) 

In some RTP simulations, the apparent radiative properties are the quantities of 

interest and they take into account reflection from the wafer backside. To predict these 

properties, we calculate firstly reflectivity Rb of the wafer backside using the thin film 
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theory [19] since we assume backside film structure to be planar. If the absorption 

coefficient of the substrate is � and the wafer thickness is Hw, then the apparent absorptivity 

of the wafer (or its emissivity as it follows from the equilibrium condition) is 

� �� )()()( wbw HRHRA �� ������ exp1exp110 �    (22) 

This expression is often used to calculate the heat absorbed by the wafer. 

5. RESULTS AND DISCUSSION 

Based on the above numerical approach, a computer code has been developed which is 

capable of simulating propagation of 2D and 3D electromagnetic wave in lossy, anisotrpoic, 

and inhomogeneous mediums with irregular geometries by using an unstructured FVTD 

method. To examine the performance of the present code, several problems containing 

different geometries are investigated and they are all assumed to be excited by a sinusoidal 

plane wave. So far, the FVTD method has been mainly applied for electromagnetic 

scattering problems. So we first consider a wave scattering by a conducting cylinder. After 

that, we investigate electromagnetic wave interaction with several non-planar structures 

with characteristic sizes close to the wavelength of radiation. For each problem, the grid 

resolution is usually more than 20 points per wavelength in order to obtain grid independent 

results. In this study, all computations were conducted on the 800 MHz Linux PC machine. 

For a typical simulation, the steady-state harmonic solution is reached after 10 wave cycles. 

The corresponding CPU time is dependent on the problem size and it is usually not more 

than an hour.  
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5.1  Wave scattering by a conducting cylinder 

Consider a TE plane wave incident on a perfect conducting cylinder. This problem is 

selected because its analytical solution exists. For a perfect electrical conductor, the 

tangential components of the electric field must be zero on the conductor surface. Figure 

5(a) shows the unstructured grid used in the calculation. The incident TE plane wave has a 

wave number of 1 m-1 with the magnetic field intensity amplitude of 3.0�108 A/m. The 

radius of the cylinder is 1.0 m. The open boundary is located about two wave lengths away 

from the cylinder. In the computation, a scattered wave formulation was employed instead 

of the total wave formulation. The time step was chosen to be 1.0�10-10 second. Figure 5(b) 

demonstrates the nondimensional electric current profile along the cylinder surface. The 

present results are found to be essentially identical to the exact solution [20], indicating that 

our developed Maxwell’s equation solver is very accurate. 

5.2  Radiative interaction with a non-planar structure 

With the validation of the present code in electromagnetic wave scattering problems, 

we shift our attention on radiative interaction with microstructures. The interaction of 

radiation wave with planar structures is well-known and the corresponding reflectivity and 

transmissivity can be easily calculated from the thin film theory [19]. Electromagnetic wave 

interaction with a non-planar structure with characteristic length close to the wavelength of 

radiation is much more complicated than that with a planar structure. As a result, it is 

impossible to use the exact method to predict the associated radiative properties. So far 

there have been very few studies available which involved solving Maxwell’s equations to 

calculate the reflection, transmission, and absorption coefficients. Erofeev et. al. [2] were 
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the first to rigorously model radiative properties of non-planar structures for comprehensive 

RTP simulation by solving Maxwell’s equation using the frequency-domain finite element 

method. One of their considered problems is a periodic structure consisting of trenches and 

juts shown in Fig. 6 and it will be investigated by the present code for the validation study. 

The structure is assumed to be illuminated at normal direction with wavelength at 1.0 �m 

(maximum of radiation spectrum at the filament temperature 3000 K in a RTP system) and 

it is maintained at a temperature of 600 C. The period of the structure is 2.0 �m and the 

trench depth can be changed from 0 to 1.0 �m. Before Maxwell’s equations are solved, the 

material parameters �  and �  are calculated from the complex refractive index. The 

complex refractive index of silicon depends on wavelength, temperature and impurity 

concentration and it is taken from Refs. [21, 22].  

Table 1 shows the calculated reflectivities at different trench depths based on a 

domain 2.0 �m � 4.0 �m which is discretized into 80,000 quadrilateral volume cells. The 

result of interest is the relectivity of nonpolarized wave rather than that for specific 

polarization. The reflectivities from Erofeev et. al. [2] in the table are directly hand picked 

from the paper and they may be subjected to small errors. So, the results are considered to 

be meaningful only to the third decimal place. Previously, the present authors applied the 

FDTD method [5] to investigate the same problem and their results are also listed in the 

Table 1 for comparison. As the trench depth is increased from 0 to 1.0 �m, the calculated 

reflectivity is seen to keep changing. At h=0.75 �m, the reflectivity drops over 15% in 

comparison with that at h=0 �m. Compared to the studies from Erofeev et. al. and FDTD 

method, the present prediction basically shows a good agreement for each case. The 

maximum relectivity difference among three different studies is around 5%.  
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5.3  Radiative interaction with a patterned wafer 

With the validation of the present code in a nonplanar structure, a complete patterned 

wafer shown in Fig. 7 will be investigated to demonstrate how the radiative properties 

change across the wafer. The front side of the wafer consists of the wafer periphery and die 

area. The periphery area can be considered as a planar structure and it is 50 nm layer of 

Si3N4 deposited on the silicon substrate. The die area has a periodic structure similar to 

those in Fig. 6 but silicon surface is covered with 50 nm Si3N4 layer. The trench depth can 

be changed from 0 to 1.0 �m. The substrate thickness equals 0.7 mm, and wafer 

temperature equals 600 C. The wavelength of incident radiation is set to be 1.0 �m. In the 

present computation, the complex reflective index of Si3N4 is taken from Ref. [21]. The 

sizes of the computational domain for the periphery and die areas are chosen to the same 

and they are 2.0 �m � 4.0 �m. The total numbers of quadrilateral cells used for two 

domains are also the same and they are equal to 800,000. Like the previous problem, this 

problem was also considered previously by the present author with the FDTD method [5] 

and the corresponding solution will be used to examine the accuracy of the present results 

from the FVTD method. 

Table 2 shows the apparent absorptivities from the periphery and die region with 

varying trench depth at normal incidence. For comparison, the apparent absorptivities from 

the bare silicon are also provided. In the last two decades, prediction of wafer radiative 

properties has experienced three developmental stages. In the first stage, an entire wafer is 

treated simply as bare silicon. In the second stage, both the periphery and die region are 

treated as thin film structures. The third stage involves rigorously electromagnetic modeling 

as described in this study. As the stage number changes from one to three, the accuracy of 
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predicted radiative properties across a wafer should be increased because the physical 

model becomes more realistic. In the wafer periphery, the present results (third column) are 

almost identical to the results from the thin film theory (not listed) because the considered 

structure is of planar geometry. However, the bare silicon approach (second column) 

underestimates the absorptivities by about 11% in the wafer periphery. In the die area, the 

thin film approach calculates the radiative properties of each component at first, these 

properties are then averaged using the fractional area of the components as weighting 

factors. The die area shown in Fig.7 consists of two components, silicon substrate and 

substrate coated with Si3N4, and the corresponding thin film results are listed in the fourth 

column of the table. Obviously, the thin film approach cannot consider the effect of varying 

trench depth. Compared to the results by directly solving Maxwell’s equations, the thin film 

approach underestimates the absorptivities by up to 6% with h=0.5 �m in the die area. This 

level of difference in radiative properties will have a great implication on the wafer 

temperature distribution. Compared to the results from the FDTD method, the present 

prediction shows a very good agreement for each case. The maximum absorptivity 

difference between two different methods is within 2%.   

6. CONCLUSIONS 

Since real microstructures of dies are nonplanar and have characteristic length close to 

the wavelength of incident radiation, a rigorous electromagnetic model has been developed 

to solve Maxwell’s equations using the FVTD method and predict the radaitive properties 

of patterned silicon wafers. To validate the present model, a wave scattering problem is 

considered at first and the predicted results are found to be essentially identical to the 
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analytical solution. After that, radiative interactions with a nonplanar structure and a 

patterned wafer consisting of periphery and die area are investigated, and predicted 

reflectivities and absorptivities are found to match available other solutions very well, 

indicating that the present finite volume approach in the time domain is accurate to predict 

radiative interaction with microstructures. 
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Fig. 1  Schematic of a patterned wafer: (a) front side, which has the die area and wafer 

periphery, and (b) cutaway showing the profile of different areas. 
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Fig. 2  Cell centered control volume for 2D unstructured grids
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Fig. 5  Wave scattering by a conducting cylinder; (a) unstructured computational grid and 

(b) electric current distribution along the cylinder surface. 
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